

# Creating AWG Waveforms in SBench 6 using Equations

Arbitrary waveform generators (AWG's) are among the most powerful signal sources available for testing. They offer an extensive range of waveshapes which can be created and selected to rapidly provide a broad range of test events.

Spectrum Instrumentation offers two families of arbitrary waveform generators. The first is theM2i.60 series which offers sample rates to 125 Megasamples/second (MS/s) and signal bandwidths of up to 60 MHz at 14 bits amplitude resolution. The second is the newly released M4i.66xx series Arbitrary Waveform Generators that set new standards in bandwidth, time and amplitude resolution. The new models of the M4i.66xx series offer one, two and four channels with each channel capable of outputting electronic signals at rates of up to 625 MS/s with 16 bit vertical resolution. These two families of AWG's are ideal for generating either low or high frequency signals up to 200 MHz with the best possible accuracy and fidelity.

| *                                                                                       | Function Generator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| Source Signals<br>Signal 0<br>Signal 1<br>Signal 2<br>Signal 3                          | Source Signals Channels   Signal 0 Double click   Signal 1 Double click   Signal 3 Double click   Signal 3 Double click   File name Store to cache if possible (tmp file otherwise)   Citck here to set name manually Citck here to set name manually   Citck here to set name Store to cache if possible (tmp file otherwise)   Citch here to set name Store to cache if possible (tmp file otherwise)   Citch here to set name File name   File name File name   File name File name   File name File name |                              |  |  |
| Function   sm(pi*(2*(x/5000)+(((1/500)+(-1/5000)))/(16384))*x^2))    Manual setup       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |  |  |
| Samplerate<br>1.000 MHz<br>Samples<br>Length 16 kS<br>Resolution<br>16 Bit<br>Amplitude | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ▼<br>Posttrigger [SkS ▼<br>▼ |  |  |
| 1000.0 mV                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Start Stop Cancel            |  |  |

Supporting all its modular digitizer and AWG products Spectrum offers a sophisticated software application known as SBench6. On SBench 6 Formula Editor the AWG side SBench6 provides an editor for creating waveforms using equations as shown in Figure 1.

# Waveform Equation Components

This application note provides an overview of the rules for waveform creation along with a series of detailed examples. Let's start with an overview of the waveform creation elements available in SBnech6

#### Constants

Two constants are pre-defined:

e = Euler's number = 2.7182... pi = PI = 3.14159 ...

Users can define their own constants using the function 'const' function : const SpeedOfLight=299792458;

#### Comments

Comments can be inserted into the formula by using /\* and \*/ mark (C language style comments).

Spaces, blank lines or line feeds may be added to the equation structure to improve understandability

#### **Source Signals**

sig0(x) value of source signal 0 sig1(x) value of source signal 1 sig2(x) value of source signal 2 sig3(x) value of source signal 3



#### **Operators**

- + Addition
- Subtraction
- Multiplication
- / Division
- % Modulo
- ^ Power
- & bitwise AND
- bitwise OR
- < bitwise left shift
- >> bitwise right shift

#### **Functions**

All the following functions require an argument. The standard argument is the x (current sample) which runs from zero to [length-1]. The argument can also be modified using another expression. This allows manipulation of the time base of the resultant signal.

The bitwise functions AND, OR, SHIFT can only be used on signals or on other bitwise functions but it is not possible to use them on functions.

## **Function List**

| sin(x)  | Sine              |
|---------|-------------------|
| cos(x)  | Cosine            |
| tan(x)  | Tangent           |
| asin(x) | Arc Sine          |
| acos(x) | Arc Cosine        |
| atan(x) | Arc Tangent       |
| sinh(x) | Hyperbolic Sine   |
| cosh(x) | Hyperbolic Cosine |
| tanh(x) | Hyperbolic Tangen |
| ln(x)   | Natural Logarithm |
| abs(x)  | Absolute Value    |

# **Conditional Functions**

| if (x, min, max) | if x >=min and x<=max the result is 1.0, otherwise zero          |
|------------------|------------------------------------------------------------------|
| sign (x)         | is -1.0 if argument is negative, +1.0 if argument is positive    |
| tri (x,d)        | Triangle with d% of one period rising, the other 100- d% falling |
| rect (x,d)       | Rectangle with d% of one period high, the other 100-d% low       |



# **Examples of Creating Waveforms in SBench 6 Using Equations**

The following table contains many examples of waveforms based on equations using the elements discussed previously. Note all equations are based upon the current sample value represented by the symbol x. This results in equation arguments expressed in terms of the signal period which is always an integer number of samples. The time axis can be determined by multiplying the sample value by the sampling period. Adjusting the sample rate of the AWG allows any frequency or time interval to be produced within the waveform memory length and sampling rate resolution limits.

| Waveform           | General Equation                                                                           | Example            |
|--------------------|--------------------------------------------------------------------------------------------|--------------------|
| Unit Step          | If (x, X <sub>D</sub> , X <sub>MAX</sub> )<br>X <sub>D</sub> - Location of step in samples | - I<br>- I         |
|                    | $X_{MAX}$ – Duration of the waveform in samples                                            |                    |
|                    |                                                                                            | <u>o v</u>         |
|                    |                                                                                            | -                  |
|                    |                                                                                            | 1V                 |
|                    |                                                                                            |                    |
|                    | Example: if (x,8192,16384 )                                                                | -4 ms 0 s 4 ms 8 r |
| Time Reversed Step | 1 - If (x, X <sub>0</sub> , X <sub>MAX</sub> )                                             | -                  |
|                    | X <sub>0</sub> - Location of step in samples                                               | 1V                 |
|                    | X <sub>MAX</sub> – Duration of the waveform in samples                                     | _                  |
|                    |                                                                                            | _0 V               |
|                    |                                                                                            | - 17               |
|                    |                                                                                            | 1V                 |
|                    |                                                                                            |                    |
|                    | Example: 1-if ( x,8192,16384 )                                                             | -4 ms 0 s 4 ms 8 r |
| Unit Pulse         | lf (x, X <sub>s</sub> , X <sub>E</sub> )                                                   | -                  |
|                    | X <sub>S</sub> – Location of leading edge in samples                                       | _1V                |
|                    | $X_E^{}$ – Location of trailing edge in samples                                            | _ I                |
|                    |                                                                                            |                    |
|                    |                                                                                            | - 17               |
|                    |                                                                                            |                    |
|                    |                                                                                            |                    |
|                    | Example: if (x,6192, 10192)                                                                | -4 ms 0 s 4 ms 8 r |
| Rectangular Unit   | 0.5+0.5 *sign (sin (2*pi*x/X <sub>p</sub> ))                                               | -                  |
|                    | X <sub>p</sub> - Period in samples                                                         |                    |
|                    |                                                                                            |                    |
|                    |                                                                                            |                    |
|                    |                                                                                            | -                  |
|                    |                                                                                            | -1V                |
|                    |                                                                                            |                    |
|                    | Example: 0.5+0.5*sign(sin (2*pi*x/1000))                                                   | -4 ms 0 s 4 ms 8 r |



M=M 15 M=M 14 M=M 14 M=M 18 M=M 2 M=M 2 M=M 2 M=M 2 M=M 2

....

•

| Waveform            | General Equation                                                        | Example            |
|---------------------|-------------------------------------------------------------------------|--------------------|
| Bipolar Pulse Train | rect (x/X <sub>p</sub> , d)                                             | -                  |
|                     | X <sub>P</sub> - Period in samples                                      |                    |
|                     | d- Duty cycle in percent (%)                                            |                    |
|                     |                                                                         | _0 V I             |
|                     |                                                                         |                    |
|                     |                                                                         |                    |
|                     |                                                                         |                    |
|                     | <b>Example</b> : rect(x/1000,50)                                        | -4ms 0s 4ms 8r     |
| Ramp                | x*(DV/DX)                                                               | -                  |
|                     | DV/DX – Slope of the ramp in volts/samples                              | 1V                 |
|                     |                                                                         | -                  |
|                     |                                                                         | -D.Y.              |
|                     |                                                                         | - IV               |
|                     |                                                                         |                    |
|                     | Example: v*(1/16284)                                                    |                    |
|                     |                                                                         | -4 ms 0 s 4 ms 8 r |
| Delayed Ramp        | (x-X <sub>D</sub> )* (DV/DX)* if(x, X <sub>D</sub> , X <sub>MAX</sub> ) | -                  |
|                     | X <sub>D</sub> – Delay in samples                                       | 1V                 |
|                     | DV/DX – Slope of the ramp in volts/samples                              | i                  |
|                     | X <sub>MAX</sub> – Duration of the waveform in samples                  | <u>_0 v</u>        |
|                     |                                                                         |                    |
|                     |                                                                         | 1V I               |
|                     |                                                                         |                    |
|                     | Example: (x-6192)*(1/16384)*if(x,6192,16384)                            | -4 ms 0 s 4 ms 8 r |
| Truncated Ramp      | (x-X <sub>D</sub> )* (DV/DX)* if(x, X <sub>D</sub> , X <sub>E</sub> )   | -                  |
| (Delayed)           | X <sub>D</sub> – Delay in samples                                       | _1V                |
|                     | DV/DX – Slope of the ramp in volts/samples                              |                    |
|                     | X <sub>E</sub> – Location of trailing edge in samples                   |                    |
|                     |                                                                         | - 1                |
|                     |                                                                         | 1V                 |
|                     |                                                                         |                    |
|                     | Example: (x-6000)*(1/4000)*if(x,6000,10000)                             | -4 ms 0 s 4 ms 8 r |



M=M 15 M=M 14 M=M 14 M=M 18 M=M 2 M=M 2 M=M 2 M=M 2 M=M 2

....

•

| Waveform          | General Equation                                                         | Example                                             |
|-------------------|--------------------------------------------------------------------------|-----------------------------------------------------|
| Negative Ramp     | (x-X <sub>D</sub> )* (-1*DV/DX)* if(x, X <sub>D</sub> , X <sub>E</sub> ) | - 1                                                 |
| (Inuncated)       | X <sub>D</sub> – Delay in samples                                        | _1V                                                 |
|                   | DV/DX – Slope of the ramp in volts/samples                               |                                                     |
|                   | $X_{E}^{-}$ Location of trailing edge in samples                         | <u>_ov</u>                                          |
|                   |                                                                          |                                                     |
|                   |                                                                          |                                                     |
|                   | Example: (x-6000)*(-1/4000)*if(x,6000,10000)                             | -4 ms 0 s 4 ms 8 r                                  |
| Periodic Triangle | Tri (x/ X <sub>p</sub> , d)                                              | -                                                   |
| vvave             | X <sub>P</sub> - Period in samples                                       |                                                     |
|                   | d- Duty cycle in percent (%)                                             |                                                     |
|                   |                                                                          | _0V                                                 |
|                   |                                                                          | -11                                                 |
|                   |                                                                          |                                                     |
|                   |                                                                          |                                                     |
|                   | <b>Example</b> : tri(x/1000,95)                                          | -4 ms 0 s 4 ms 8 r                                  |
| Sinewave          | sin(2*pi*x/X <sub>p</sub> )                                              |                                                     |
|                   | X <sub>P</sub> - Period in samples                                       | T <sup>V</sup> AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
|                   |                                                                          |                                                     |
|                   |                                                                          |                                                     |
|                   |                                                                          |                                                     |
|                   |                                                                          |                                                     |
|                   |                                                                          |                                                     |
|                   | Example: sin(2*pi*x/1000)                                                |                                                     |
| Gated Sine        | sin(2*pi*x/ X <sub>p</sub> ) * if(x, X <sub>s</sub> ,X <sub>E</sub> )    |                                                     |
|                   | X <sub>p</sub> - Period in samples                                       |                                                     |
|                   | X <sub>S</sub> – Location of leading edge in samples                     | I – AA&A                                            |
|                   | X <sub>E</sub> – Location of trailing edge in samples                    |                                                     |
|                   |                                                                          | 1V                                                  |
|                   |                                                                          |                                                     |
|                   | Example: sin(2*pi*x/1000)*if(x,6000,10000)                               | -4 ms U s 4 ms 8 r                                  |



M=M 15 M=M 14 M=M 14 M=M 18 M=M 2 M=M 2 M=M 2 M=M 2 M=M 2

....

•

| Waveform                        | General Equation                                                                                                                                                                                                                                                                                                       | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decaying<br>Exponential         | e ^ (-1*(x/X <sub>t)</sub> )<br>X <sub>T</sub> – Exponential time constant in samples                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | <b>Example</b> : e^(-1*(x/500))                                                                                                                                                                                                                                                                                        | -4ms 0 s 4ms 8 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Delayed Decaying<br>Exponential | (e ^ (-1*(x- X <sub>D</sub> )/ X <sub>t</sub> ))* if(x,X <sub>D</sub> ,X <sub>MAX</sub> )<br>X <sub>D</sub> – Delay in samples<br>X <sub>T</sub> – Exponential time constant in samples<br>X <sub>MAX</sub> – Duration of the waveform in samples<br><b>Example</b> :<br>(e^(-1*((x-6192)/500))) * if (x,6192,16834)   | - I<br>- I<br>- V<br>- V<br>- V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1V<br>1<br>1V<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Rising Exponential              | 1-(e^(-1*(x/X <sub>T</sub> )))<br>X <sub>T</sub> – Exponential time constant in samples<br><b>Example</b> : 1-(e^(-1*((x)/500)))                                                                                                                                                                                       | - I<br>- I<br>- V<br>- I<br>- V<br>- I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Delayed Rising<br>Exponential   | (1-(e^(-1*(x-X <sub>D</sub> /X <sub>T</sub> ))))* if(x,X <sub>D</sub> ,X <sub>MAX</sub> )<br>X <sub>D</sub> – Delay in samples<br>X <sub>T</sub> – Exponential time constant in samples<br>X <sub>MAX</sub> – Duration of the waveform in samples<br><b>Example</b> :<br>1-(e^(-1*((x-6192)/500)))) * if(x,6192,16384) | - I<br>- I<br>- V<br>- I<br>I<br>I<br>I<br>I<br>I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



M=M 15 M=M 14 M=M 14 M=M 18 M=M 2 M=M 2 M=M 2 M=M 2 M=M 2

....

•

| Waveform          | General Equation                                                                         | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exponential Pulse | $(1-(e^{-1*(x-X_S/X_T))})*if(x,X_S,X_P) +$                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | (e ^ (-1*(x- X <sub>p</sub> )/ X <sub>t</sub> ))* if(x,X <sub>P</sub> X <sub>MAX</sub> ) | _1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | X <sub>T</sub> – Exponential time constant in samples                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | X <sub>MAX</sub> – Duration of the waveform in samples                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | X <sub>S</sub> – Location of start of rise in samples                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | X <sub>P</sub> – Location of peak in samples                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Example:<br>(1_(_^(_1*((v_6192)/500)))) * if(v_6192,8192)+                               | -4 ms U s 4 ms 8 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | (e^(-1*((x-8192)/500))* if(x,8192,16384))                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exponentially     | (e ^ (-1*(x/X <sub>t</sub> ))) * sin(2*pi*x/ X <sub>p</sub> )                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Damped Sine       | X <sub>T</sub> – Exponential time constant in samples                                    | 1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | $X_{p}$ - Period in samples                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                          | A MARANA AND AND AND AND AND AND AND AND AND |
|                   |                                                                                          | -1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Example: e^(-1*(x/2500)) *sin(2*pi*x/500)                                                | -4ms 0s 4ms 8r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gaussian Pulse    | e^((-1/2)*((x-X <sub>D</sub> )^2)/(Xs^2))                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | X <sub>D</sub> – Delay (mean) in samples                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Xs - Pulse Width (sigma)                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   |                                                                                          | 1V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | <b>Example</b> : e^((-1/2)*((x-8192)^2)/(1000^2))                                        | -4 ms 0 s 4 ms 8 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Amplitude         | 0.5*sin(2*pi*x/X <sub>C</sub> )*(1+ K <sub>M</sub> *f(x))                                | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MOQUIATION        | X <sub>C -</sub> Carrier period in samples                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | K <sub>M</sub> – Modulation index 0 to 1                                                 | a la contra de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | F(x) – modulation waveform                                                               | 1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | Europa I.                                                                                | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | Example:<br>0.5*sin(2*pi*x/250)*(1+(0.75*cos(2*pi*x/5000)))                              | -4 ms 0 s 4 ms 8 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



M=M 15 M=M 14 M=M 14 M=M 18 M=M 2 M=M 2 M=M 2 M=M 2 M=M 2

....

•

| Waveform                       | General Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Example                               |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Sine Amplitude                 | x*(DV/DX) * sin(2*pi*x/X <sub>C</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Sweep                          | DV/DX – Slope of the ramp in volts/samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _1V                                   |
|                                | X <sub>C –</sub> Carrier period in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1V                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                | <b>Example</b> : x*(1/16384)*sin(2*pi*x/250)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -4 ms 0 s 4 ms 8 r                    |
| Frequency<br>Modulation        | Sin(2*pi*x/X <sub>C</sub> +(X <sub>M</sub> /X <sub>Dev</sub> )*cos(2*pi*x/X <sub>M</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                | X <sub>C –</sub> Carrier period in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                | X <sub>M</sub> – Modulation Period in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
|                                | X <sub>Dev</sub> – Period deviation in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | III I I I I I I I I I I I I I I I I I |
|                                | <b>Even male:</b> $\frac{1}{2}$ $\frac$ |                                       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4 ms 0 s 4 ms 8 r                    |
| Linear Frequency               | Sin(pi*(2*(x/X <sub>s</sub> )+(((1/X <sub>E</sub> )-(1/X <sub>S</sub> ))/X <sub>MAX</sub> )*x^2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Sweep                          | X <sub>S</sub> – Start Period in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|                                | X <sub>E</sub> – End Period in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                | X <sub>MAX</sub> – Duration of the waveform in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
|                                | Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|                                | sin(pi*(2*(x/5000)+(((1/500)+ (-/5000))/16384)*x^2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4 ms 0 s 4 ms 8 r                    |
| Logarithmic<br>Frequency Sween | Sin*2*pi(X <sub>MAX</sub> /ln(X <sub>S</sub> /X <sub>E</sub> )/X <sub>S</sub> )*e^((ln(X <sub>S</sub> /X <sub>E</sub> )/X <sub>S</sub> )*x)-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                     |
| Trequency Sweep                | X <sub>S</sub> – Start Period in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|                                | X <sub>E</sub> – End Period in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                | X <sub>MAX</sub> – Duration of the waveform in samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                | Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|                                | sin(2*pi*(16384/ln( 5000/500)/5000) *<br>e^((ln(5000/500)/16384)*x)-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4 ms 0 s 4 ms 8 r                    |



M=M 15 M=M 14 M=M 14 M=M 18 M=M 2 M=M 2 M=M 2 M=M 2 M=M 2

....

•

5

| Waveform            | General Equation                                                    | Example                     |
|---------------------|---------------------------------------------------------------------|-----------------------------|
| Phase Modulation    | Sin((2*pi*(x/X <sub>C</sub> )+ K*Sin(2*pi*(x/X <sub>M</sub> )))     |                             |
|                     | X <sub>C -</sub> Carrier period in samples                          |                             |
|                     | X <sub>M</sub> – Modulation Period in samples                       | E ELL ANNALIS ANNALS ANNALS |
|                     | K– Peak phase excursion in radians                                  |                             |
|                     | <b>Example</b> : sin(2*pi*(x/500)+7* sin(2*pi*(x/5000)))            |                             |
| Lorentzian Pulse    | 1/(1+((x-X <sub>D</sub> )/(X <sub>W</sub> ))^2)                     |                             |
|                     | X <sub>D</sub> - Time delay in samples                              | _1V Å                       |
|                     | $T_W$ - Half width point of the pulse in samples                    |                             |
|                     |                                                                     | 1V                          |
|                     | Example: 1/(1+((x-8192)/500)^2)                                     | -4ms 0s 4ms 8r              |
| Full Wave Rectified | Abs(Sin(2*pi*x/ X <sub>p</sub> ))                                   | -                           |
| Sine                | X <sub>p</sub> – Sine wave period in samples                        |                             |
|                     |                                                                     |                             |
|                     | <b>Example</b> : Abs(Sin(2*pi*x/5000))                              | -4ms 0s 4ms 8r              |
| Half Wave Rectified | 0.5*(sin(2*pi*x/X <sub>p</sub> )+Abs(Sin(2*pi*x/ X <sub>p</sub> ))) | -                           |
|                     | X <sub>p</sub> – Sine wave period in samples                        |                             |
|                     | <b>Example</b> : 0.5*(sin(2*pi*x/5000)+Abs(Sin(2*pi*x/5000)))       |                             |
|                     |                                                                     | 1V                          |
|                     |                                                                     | -4ms 0s 4ms 8r              |



M=M 15 M=M 14 M=M 14 M=M 18 M=M 2 M=M 2 M=M 2 M=M 2 M=M 2

....

•

D

| Waveform | General Equation                                                                 | Example         |
|----------|----------------------------------------------------------------------------------|-----------------|
| Sinc     | sin((x-X <sub>D</sub> )/X <sub>P</sub> )/((x- X <sub>D</sub> )/ X <sub>P</sub> ) |                 |
|          | X <sub>D</sub> - Time delay in samples                                           | - <sup>1V</sup> |
|          | X <sub>p</sub> – Sinc period in samples                                          |                 |
|          | Example: sin((x-8192)/500)/((x-8192)/500)                                        |                 |
|          |                                                                                  | 1 V             |
|          |                                                                                  |                 |